

WasteBasedBricks (2Good2Waste)

EPD (Environmental Product Declaration)

ABOUT OUR IMPACT

At FRONT we're constantly pushing for environmental improvements of our products. To create the WasteBasedBrick we use a ceramic production process. The firing process of the bricks and slips is the major contributor to the GWP of this product, but essential because it gives a unique technical and aesthetic quality to brick that is such a part of (west) European architecture. The results presented in this EPD should be seen as an in-between step. We have an action plan in place to significantly improve the environmental impact of the WasteBasedBrick within the next three years.

These are the key measurements we're taking, now and in the near future:

Now: compensating carbon

We compensate the carbon emissions related to the firing process of the bricks. We make use of a program offered by Trees for All. Carbon compensation is not calculated in the EPD, nevertheless we believe it's an important action that we can already take now. More info on: treesforall.nl.

Now: upcycling waste, saving raw materials

In general, we believe that the use of waste materials is not valued (enough) in the various calculation methods available. There is not yet a consensus about the standardization of the methodology. From a common-sense perspective, we believe upcycling waste materials that otherwise end up in landfills is a valuable concept.

Near future: switching to a H₂ fired production process

Changing the energy mix of the production process is key to dramatically improve the impact of the WasteBasedBrick. We have already completed experiments with firing bricks on H_2 . This is a major step in becoming carbon neutral because in the burning of H_2 (that creates the heath for sintering the bricks), no carbon is released. We've also adjusted our recipes and production technology in order to prepare for this step. In '24 we expect to start production with H_2 in the mix. By '26 we expect to be able to produce the WasteBasedBricks carbon neutral.

This is our commitment to make sure bricks can stay one of the most important and durable cladding materials for facades.

Sign up for our newsletter to stay updated on these developments.

Environmental Product Declaration according to ISO 14025 and EN 15804

This declaration is for:

WasteBasedBricks from 100% Waste

Provided by:

StoneCycling

program operator **Stichting MRPI®** publisher **Stichting MRPI®** www.mrpi.nl

MRPI® registration 1.1.00470.2023 date of first issue 17-11-2023 date of this issue 17-11-2023 expiry date 17-11-2028

COMPANY INFORMATION

StoneCycling 5 8 1 Karperweg 41 1075 LB Amsterdam 0031 88 777 4200 sales@stonecycling.com www.stonecycling.com

PRODUCT

WasteBasedBricks from 100% Waste

DECLARED UNIT/FUNCTIONAL UNIT

1 piece (1 waalformaat = 1.9 kg)

DESCRIPTION OF PRODUCT

The WasteBasedBrick is made from 100% recycled materials coming from construction, demolition and industrial waste streams. It can be used for facades, wall- and floor cladding and is produced at Zilverschoon Randwijk, Netherlands.

VISUAL PRODUCT

MRPI® REGISTRATION

1.1.00470.2023

DATE OF ISSUE

17-11-2023

EXPIRY DATE

17-11-2028

MORE INFORMATION

www.stonecycling.com/wastebasedbricks/

This MRPI®-EPD certificate is verified by Anne Kees Jeeninga, Advieslab v.o.f..

The LCA study has been done by Bob Roijen, SGS INTRON.

The certificate is based on an LCA-dossier according to ISO14025 and EN15804+A2/Bepalingsmethode. It is verified according to the 'MRPI®-EPD verification protocol November 2020.v4.0'. EPDs of construction products may not be comparable if they do not comply with EN15804+A2/Bepalingsmethode. Declaration of SVHC that are listed on the 'Candidate List of Substances of Very High Concern for authorisation' when content exceeds the limits for registration with ECHA.

PROGRAM OPERATOR

Stichting MRPI® Kingsfordweg 151 1043GR Amsterdam

ir. J-P den Hollander, Managing director MRPI®

DEMONSTRATION OF VERIFICATION

CEN standard EN15804 serves as the core PCR[a]

Independent verification of the declaration and data, according to EN ISO 14025:2010:

internal:

external: X

Third party verifier:

Anne Kees Jeeninga, Advieslab v.o.f.

[a] PCR = Product Category Rules

DETAILED PRODUCT DESCRIPTION

The study is performed on the most optimal product, the WasteBasedBrick® Impact. WasteBasedBricks® are unique and produced from 100% secondary materials. The following process steps take place sequentially.

- 1- Mold preparation, the production of wooden molds used to form the bricks. The material and energy consumption for this process step has been inventoried and included in the LCA calculations.
- 2- Preparation of the 100% waste-based recipe, unitising the waste clay from the factory itself and mixing it with secondary materials such as waste from the ceramic industry.
- 3- Forming, the bricks are formed using the previously produced molds. Molding sand is used for this, which has been dried at the supplier's. The extraction, drying and shaping of the sand is included in the LCA calculations.
- 4- Drying, the green bricks are dried. Up to and including this production step, all "production waste" / rejects can be added again at the beginning of the production process.
- 5- Stacking, the dried bricks are stacked on hulos in the oven.
- 6- Baking, the bricks are baked. This uses natural gas and electricity. The firing curve is optimised for the 100% waste based recipe.
- 7- Packing, the bricks are prepared for delivery.

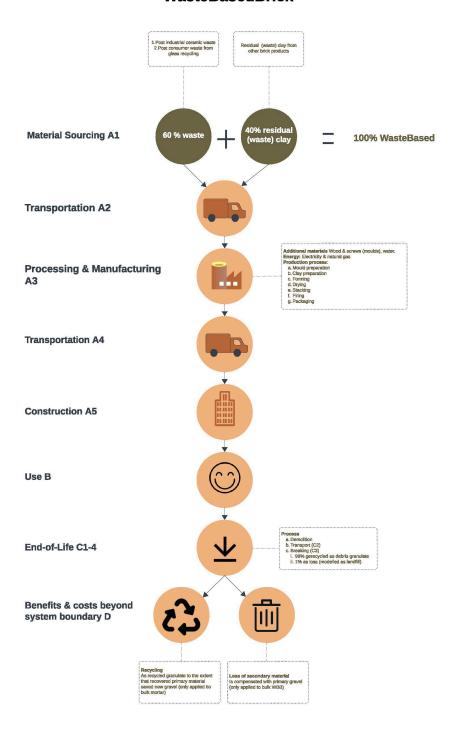
It's noteworthy that WasteBasedBricks® boast an exceptional service life, often surpassing the lifespan of the structures they are used to build. This durability further underscores StoneCycling's commitment to sustainability and long-term environmental responsibility.

COMPONENT > 1% of total mass	[%]
Waste Clay	-
Waste material 1 (mineral based)	-
Waste material 2 (mineral based)	-

SCOPE AND TYPE

WasteBasedBricks® are produced in Heteren, the Netherlands. The waste treatment scenario used for this EPD is based on the Dutch waste treatment scenario.

PROD	UCT ST	AGE	GE CONSTRUCTION			US	SE ST	AGE			E	ND O	F LIFE		BENEFITS AND	
			PRO	CESS									STA	GE		LOADS BEYOND THE
			ST	AGE												SYSTEM BOUNDARIES
Raw material supply	Transport	Manufacturing	Transport gate to site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	ND	ND	Х	Х	Х	Х	Х


X = Modules Assessed

ND = Not Declared

Life Cycle WasteBasedBrick

LCA process diagram according to EN 15804 (7.2.1)

REPRESENTATIVENESS

The bricks in this study are produced in Heteren, the Neterlands by Zilverschoon Randwijk.

ENVIRONMENTAL IMPACT per functional unit or declared unit (indicators A1)

	UNIT	A1	A2	А3	A1-A3	C1	C2	C3	C4	D
ADPE	kg Sb eq.	7.45	4.54	5.81	1.11	3.25	3.10	8.28	8.70	3.77
ADPE	kg Sb eq.	E-8	E-7	E-7	E-6	E-8	E-7	E-9	E-10	E-9
ADPF	MJ	6.67	2.69	7.93	8.27	2.92	1.84	3.94	2.66	9.44
ADFI	IVIO	E-2	E-1	E+0	E+0	E-1	E-1	E-2	E-3	E-4
GWP	kg CO2 eq.	5.63	1.74	4.90	5.13	2.10	1.19	2.90	9.33	7.40
GWF	ky CO2 eq.	E-3	E-2	E-1	E-1	E-2	E-2	E-3	E-5	E-5
ODP	kg CFC11 eq.	4.64	3.23	6.16	6.52	3.63	2.21	3.18	3.11	6.45
ODF	Ky CFC 11 eq.	E-10	E-9	E-8	E-8	E-9	E-9	E-10	E-11	E-12
POCP	ka athana aa	3.71	1.04	7.69	9.10	2.14	7.14	1.66	9.94	5.47
POCP	kg ethene eq.	E-6	E-5	E-5	E-5	E-5	E-6	E-6	E-8	E-8
AP	kg SO2 eq.	3.91	7.49	3.74	4.88	1.58	5.12	1.34	6.82	4.20
AP	kg 302 eq.	E-5	E-5	E-4	E-4	E-4	E-5	E-5	E-7	E-7
EP	kg (PO4)3- eq.	4.48	1.50	4.90	6.84	3.59	1.02	2.99	1.32	6.85
	kg (FO4)3- eq.	E-6	E-5	E-5	E-5	E-5	E-5	E-6	E-7	E-8

Toxicity indicators for Dutch market

LITE	L. DOD	2.13	7.45	5.26	6.22	7.77	5.09	6.90	4.22	3.43
HTP	kg DCB eq.	E-3	E-3	E-2	E-2	E-3	E-3	E-4	E-5	E-5
FAETP	kg DCB eq.	4.11	2.18	4.83	7.42	1.08	1.49	1.19	1.00	5.31
FAEIF	ky DCB eq.	E-5	E-4	E-4	E-4	E-4	E-4	E-5	E-6	E-7
MAETP	ka DCD oa	1.74	7.79	4.67	5.62	3.76	5.33	4.48	3.58	2.21
WAETP	kg DCB eq.	E-1	E-1	E+0	E+0	E-1	E-1	E-2	E-3	E-3
TETP	kg DCB eq.	1.03	2.64	4.34	4.71	1.28	1.80	8.47	1.06	1.78
IEIF	ку ось ец.	E-5	E-5	E-4	E-4	E-5	E-5	E-6	E-7	E-7
ECI	Euro	7.03	2.10	3.25	3.53	2.81	1.44	3.00	1.32	9.52
ECI	Eulo	E-4	E-3	E-2	E-2	E-3	E-3	E-4	E-5	E-6
ADPF	kg Sb. eq.	3.73	1.28	4.28	4.45	1.38	8.74	2.05	1.27	5.00
ADFF	ry Sb. eq.	E-5	E-4	E-3	E-3	E-4	E-5	E-5	E-6	E-7

ADPE = Abiotic Depletion Potential for non-fossil resources

ADPF = Abiotic Depletion Potential for fossil resources

GWP = Global Warming Potential

ODP = Depletion potential of the stratospheric ozone layer

POCP = Formation potential of tropospheric ozone photochemical oxidants

AP = Acidification Potential of land and water

EP = Eutrophication Potential

HTP = Human Toxicity Potential

FAETP = Fresh water aquatic ecotoxicity potential

MAETP = Marine aquatic ecotoxicity potential

TETP = Terrestrial ecotoxicity potential

ECI = Environmental Cost Indicator

ADPF = Abiotic Depletion Potential for fossil resources expressed in [kg Sb-eq.]

ENVIRONMENTAL IMPACT per functional unit or declared unit (core indicators A2)

	UNIT	A1	A2	А3	A1-A3	C1	C2	C3	C4	D
		3.39	1.76	4.96	5.17	2.12	1.20	2.95	9.53	7.62
GWP-total	kg CO2 eq.	E-3	E-2	E-1	E-1	E-2	E-2	E-3	E-5	E-5
0)4/2 (1000	5.71	1.75	4.96	5.19	2.12	1.20	2.94	9.50	7.57
GWP-fossil	kg CO2 eq.	E-3	E-2	E-1	E-1	E-2	E-2	E-3	E-5	E-5
GWP-biogenic	kg CO2 og	-2.33	1.07	1.83	-2.14	5.90	7.27	1.70	1.88	3.49
GVVP-blogefild	kg CO2 eq.	E-3	E-5	E-4	E-3	E-6	E-6	E-5	E-7	E-7
GWP-luluc	kg CO2 eq.	4.98	6.21	2.64	3.76	1.67	4.25	5.59	2.65	8.14
GVVF-Iuluc	kg CO2 eq.	E-6	E-6	E-5	E-5	E-6	E-6	E-7	E-8	E-8
ODP	kg CFC11 eq.	5.60	4.04	6.99	7.45	4.58	2.76	3.81	3.91	7.56
ODP	kg CFCTT eq.	E-10	E-9	E-8	E-8	E-9	E-9	E-10	E-11	E-12
AP	mol H+ eq.	4.81	1.00	4.73	6.21	2.22	6.84	1.84	9.02	5.48
AF	morrit eq.	E-5	E-4	E-4	E-4	E-4	E-5	E-5	E-7	E-7
EP-freshwater	kg PO4 eq.	2.18	1.44	1.08	1.44	7.72	9.90	9.15	1.07	2.80
EF-IIesiiwalei	kg F04 eq.	E-7	E-7	E-6	E-6	E-8	E-8	E-8	E-9	E-9
EP-marine	kg N eg.	9.20	3.58	1.26	1.71	9.79	2.45	7.33	3.10	1.57
EF-IIIallile	kg iv eq.	E-6	E-5	E-4	E-4	E-5	E-5	E-6	E-7	E-7
EP-terrestrial	mol N eq.	1.09	3.94	1.39	1.90	1.07	2.70	8.14	3.42	1.82
EF-leffestifal	morn eq.	E-4	E-4	E-3	E-3	E-3	E-4	E-5	E-6	E-6
POCP	kg NMVOC eg.	2.99	1.13	4.71	6.13	2.95	7.71	2.21	9.94	5.02
FOOF	kg NWVOC eq.	E-5	E-4	E-4	E-4	E-4	E-5	E-5	E-7	E-7
ADP-minerals & metals	kg Sb eg.	7.45	4.54	5.81	1.11	3.25	3.10	8.28	8.70	3.77
ADF-IIIIIlerais & IIIelais	kg ob eq.	E-8	E-7	E-7	E-6	E-8	E-7	E-9	E-10	E-9
ADP-fossil	MJ, net calorific	6.67	2.69	7.93	8.27	2.92	1.84	3.94	2.66	9.44
ADF-1099II	value	E-2	E-1	E+0	E+0	E-1	E-1	E-2	E-3	E-4
WDP	m3 world eq.	2.00	8.27	4.01	2.48	3.91	5.66	1.79	1.19	1.09
VVDF	deprived	E-2	E-4	E-3	E-2	E-4	E-4	E-4	E-4	E-3

GWP-total = Global Warming Potential total

GWP-fossil = Global Warming Potential fossil fuels

GWP-biogenic = Global Warming Potential biogenic

GWP-luluc = Global Warming Potential land use and land use change

ODP = Depletion potential of the stratospheric ozone layer

AP = Acidification Potential, Accumulated Exceedence

EP-freshwater = Eutrophication Potential, fraction of nutrients reaching freshwater end compartment

EP-marine = Eutrophication Potential, fraction of nutrients reaching marine end compartment

EP-terrestrial = Eutrophication Potential, Accumulated Exceedence

POCP = Formation potential of tropospheric ozone photochemical oxidants

ADP-minerals&metals = Abiotic Depletion Potential for non fossil resources [2]

ADP-fossil = Abiotic Depletion for fossil resources potential [2]

WDP = Water (user) deprivation potential, deprivation-weighted water consumption [2]

Disclaimer [2]

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ENVIRONMENTAL IMPACT per functional unit or declared unit (additional indicators A2)

	UNIT	A1	A2	А3	A1-A3	C1	C2	C3	C4	D
PM	Disease incidence	6.91	1.58	2.34	4.61	5.87	1.08	4.06	1.75	9.40
FIVI	Disease incluence	E-10	E-9	E-9	E-9	E-9	E-9	E-10	E-11	E-12
IRP	kBq U235 eq.	2.05	1.18	3.62	5.00	1.25	8.05	1.25	1.09	3.81
IKF	кву 0235 еч.	E-4	E-3	E-3	E-3	E-3	E-4	E-4	E-5	E-6
ETP-fw	CTUe	1.33	2.19	8.92	1.24	1.76	1.50	3.20	1.72	1.52
E I F-IW	Croe	E-1	E-1	E-1	E+0	E-1	E-1	E-2	E-3	E-3
HTP-c	CTUh	5.94	7.79	5.74	7.11	6.15	5.32	7.59	3.98	5.63
HIF-C	CTOII	E-12	E-12	E-11	E-11	E-12	E-12	E-13	E-14	E-14
HTP-nc	CTUh	8.31	2.61	9.48	1.29	1.51	1.78	2.14	1.23	1.59
n i P-ilic	01011	E-11	E-10	E-10	E-9	E-10	E-10	E-11	E-12	E-12
SQP		3.32	2.30	1.52	7.14	3.72	1.58	6.58	5.57	1.22
SQF		E-1	E-1	E-1	E-1	E-2	E-1	E-3	E-3	E-3

PM = Potential incidence of disease due to PM emissions

IRP = Potential Human exposure efficiency relative to U235 [1]

ETP-fw = Potential Comparative Toxic Unit for ecosystems [2]

HTP-c = Potential Comparative Toxic Unit for humans [2]

HTP-nc = Potential Comparative Toxic Unit for humans, non-cancer [2]

SQP = Potential soil quality index [2]

Disclaimer [1]

- This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Disclaimer [2]

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

RESOURCE USE per functional unit or declared unit (A1 / A2)

	UNIT	A1	A2	А3	A1-A3	C1	C2	C3	C4	D
PERE	MJ	4.59	3.86	4.59	5.09	1.58	2.64	2.24	2.15	6.55
7 2112	1110	E-2	E-3	E-1	E-1	E-3	E-3	E-3	E-5	E-5
PERM	MJ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PERT	MJ	4.59	3.86	4.59	5.09	1.58	2.64	2.24	2.15	6.55
T LIXI	IVIO	E-2	E-3	E-1	E-1	E-3	E-3	E-3	E-5	E-5
PENRE	MJ	7.08	2.86	8.79	9.15	3.10	1.96	4.21	2.82	1.00
LIVINE	IVIO	E-2	E-1	E+0	E+0	E-1	E-1	E-2	E-3	E-3
PENRM	MJ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PENRT	MJ	7.08	2.86	8.79	9.15	3.10	1.96	4.21	2.82	1.00
FLINKI	IVIJ	E-2	E-1	E+0	E+0	E-1	E-1	E-2	E-3	E-3
SM	kg	1.90	0.00	0.00	1.90	0.00	0.00	0.00	0.00	0.00
Sivi	Ng	E+0	0.00	0.00	E+0	0.00	0.00	0.00	0.00	0.00
RSF	MJ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NRSF	MJ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FW	m3	4.87	3.05	1.92	7.09	1.50	2.09	1.32	2.84	2.55
1 00	1113	E-4	E-5	E-4	E-4	E-5	E-5	E-5	E-6	E-5

PERE = Use of renewable energy excluding renewable primary energy resources

PERM = Use of renewable energy resources used as raw materials

PERT = Total use of renewable primary energy resources

PENRE = Use of non-renewable primary energy resources excluding non-renewable energy resources used as raw materials

PENRM = Use of non-renewable primary energy resources used as raw materials

PENRT = Total use of non-renewable primary energy resources

SM = Use of secondary materials

RSF = Use of renewable secondary fuels

NRSF = Use of non renewable secondary fuels

FW = Use of net fresh water

OUTPUT FLOWS AND WASTE CATEGORIES per functional unit or declared unit (A1 / A2)

	UNIT	A1	A2	А3	A1-A3	C1	C2	C3	C4	D
HWD	kg	1.51	6.89	1.08	1.16	7.95	4.71	6.87	3.97	1.91
TIVO	Ng	E-7	E-7	E-5	E-5	E-7	E-7	E-8	E-9	E-9
NHWD	kg	1.49	1.67	7.09	2.53	3.45	1.14	5.50	3.61	1.02
MINVE	kg	E-3	E-2	E-3	E-2	E-4	E-2	E-3	E-2	E-5
RWD	kg	2.71	1.83	5.23	7.34	2.03	1.25	1.77	1.75	4.13
KWD	λg	E-7	E-6	E-6	E-6	E-6	E-6	E-7	E-8	E-9
CRU	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MFR	ka	0.00	0.00	2.85	2.85	0.00	0.00	1.79	0.00	0.00
IVIFK	kg	0.00	0.00	E-2	E-2	0.00	0.00	E+0	0.00	0.00
MER	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EEE	MJ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ETE	MJ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

HWD = Hazardous Waste Disposed

RWD = Radioactive Waste Disposed

MFR = Materials for recycling

EEE = Exported Electrical Energy

NHWD = Non Hazardous Waste Disposed

CRU = Components for reuse

MER = Materials for energy recovery

ETE = Exported Thermal Energy

BIOGENIC CARBON CONTENT per functional unit or declared unit (A1 / A2)

	UNIT	A1	A2	А3	A1-A3	C1	C2	СЗ	C4	D
BCCpr	kg C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ВССра	kg C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

BCCpr = Biogenic carbon content in product BCCpa = Biogenic carbon content in packaging

CALCULATION RULES

Virtually no materials or processes have been excluded from the LCA. Zilverschoon Randwijk inventoried process data in 2023. Energy and material use has been calculated based on the actual recipe, the machinery used and the production rate.

Regarding the secondary materials applied in the bricks processing and transport to the production location has been allocated to the product system that produces the waste. All processes at the location of Zilverschoon Randwijk have been allocated to the production of WasteBasedBricks.

SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION

The end of life is based on processes in the Dutch national LCA database and LCA manual.

Description	amount	unit		
Demolition (C1): diesel use	5.2	I/m3 waste		
Demolition (C1): excavator	0.06	hr/m3 waste		
Transport to waste tratment (crusher) by truck (C2)	50	km		
Crushing (C3): 0270-reC & Breken, per kg steenachtig (Dutch	1	kg/kg waste		
LCA database).		kg/kg wasie		
Loss 1% (modelled as landfill) (C4) 0240-sto&Stort beton,	0.01	ka/ka wasto		
cellenbeton … (Dutch LCA database)	0.01	kg/kg waste		

DECLARATION OF SVHC

No substances that are listed in the latest "Candidate List of Substances of Very High Concern for authorisation" are included in the product that exceed the limit for registration.

REFERENCES

- •Stichting Nationale Milieudatabase, Bepalingsmethode Milieuprestatie Bouwwerken Versie 1.0 (juli 2020).
- •EN 15804:2012+A2:2019, Sustainability of construction works Environmental product declarations
- Core rules for the product category of construction products, 2019.
- •ISO 14040:2006. Environmental management Life cycle assessment Principles and framework. 2006.
- •ISO 14044:2006. Environmental management Life cycle assessment Requirements and guidelines. 2006.
- •ISO 21930:2017. Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services. 2017.
- ISO 14025:2006. Environmental labels and declarations Type III environmental declarations Principles and procedures. 2006.
- •SGS INTRON report: A135280/R20231298, July 2023

REMARKS

StoneCycling is continuously innovating their product. We're actively working towards carbon neutral fired bricks by changing the fuel type. Read more on stonecycling.com/news/carbon-neutral-bricks/.

Contact FRONT®

For questions and suggestions, please reach out to:

sales@front-materials.com frontmaterials.com

+31(0)88 777 4200